Linear maps that strongly preserve regular matrices over the Boolean algebra
نویسندگان
چکیده
منابع مشابه
Linear operators that strongly preserve graphical properties of matrices - II
Beasley, L.B. and N.J. Pullman, Linear operators that strongly preserve graphical properties of matrices, Discrete Mathematics 104 (1992) 143-157. An operator on the set Ju of n X n matrices strongly preserves a subset 9 if it maps 9 into 9 and A\% into A\%. The operator semigroup of 9 is the semigroup of linear operators strongly preserving 9. We show that all the n x n matrix-families which a...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملLinear operators that strongly preserve regularity of fuzzy matrices
An n× n fuzzy matrix A is called regular if there is an n× n fuzzy matrix G such that AGA = A. We study the problem of characterizing those linear operators T on the fuzzy matrices such that T (X) is regular if and only if X is. Consequently, we obtain that T strongly preserves regularity of fuzzy matrices if and only if there are permutation matrices P and Q such that it has the form T (X) = P...
متن کاملlinear maps preserving or strongly preserving majorization on matrices
for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...
متن کاملMultiplicative maps on invertible matrices that preserve matricial properties
Descriptions are given of multiplicative maps on complex and real matrices that leave invariant a certain function, property, or set of matrices: norms, spectrum, spectral radius, elementary symmetric functions of eigenvalues, certain functions of singular values, (p, q) numerical ranges and radii, sets of unitary, normal, or Hermitian matrices, as well as sets of Hermitian matrices with fixed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2011
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-011-0001-6